# MATH 54 - MOCK MIDTERM 1 

PEYAM RYAN TABRIZIAN

Name:
Instructions: This is a mock midterm and it's designed to give you an idea of what the actual midterm will look like.

NOTE: The actual midterm will be VERY similar to this mock midterm (in length and format-wise). So if you know how to do all the questions on this exam, you'll be able to ace the actual midterm. However, the T/F questions might be different!

| 1 |  | 10 |
| :--- | :--- | ---: |
| 2 |  | 10 |
| 3 |  | 15 |
| 4 |  | 20 |
| 5 |  | 15 |
| 6 |  | 15 |
| 7 |  | 15 |
| Total |  | 100 |

1. (10 points, 2 pts each)

Label the following statements as $\mathbf{T}$ or $\mathbf{F}$.
NOTE: In this question, you do NOT have to show your work! Don't spend too much time on each question!
(a) If the augmented matrix of the system $A \mathbf{x}=\mathbf{b}$ has a row of the form $\left[\begin{array}{llll}0 & 0 & 0 & 1\end{array}\right]$, then the corresponding system has no solutions.
(b) If $A$ and $B$ are two $2 \times 2$ matrices, then $\operatorname{det}(A B)=\operatorname{det}(B A)$
(c) The equation $A \mathbf{x}=\mathbf{0}$ always has either one or infinitely many solutions.
(d) If $A$ is a $3 \times 3$ matrix with two pivot positions, then the equation $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
(e) If $A, B, C$ are square matrices with $A B=A C$, then $B=C$
2. (10 points, 5 points each) Label the following statements as TRUE or FALSE. In this question, you HAVE to justify your answer!!!

This means:

- If the answer is TRUE, you have to explain WHY it is true (possibly by citing a theorem)
- If the answer is FALSE, you have to give a specific COUNTEREXAMPLE. You also have to explain why the counterexample is in fact a counterexample to the statement!
(a) If $A$ and $B$ are any $n \times n$ matrices, then $(A+B)^{-1}=A^{-1}+B^{-1}$
(b) If $A$ (not necessarily square) has a pivot in every row, then the system $A \mathbf{x}=\mathbf{b}$ is always consistent.

3. (15 points) Solve the following system of equations (or say it has no solutions):

$$
\left\{\begin{array}{c}
2 x+2 y+z=2 \\
x-y+3 z=3 \\
3 x+5 y=1
\end{array}\right.
$$

4. (20 points) Solve the following system $A \mathbf{x}=\mathbf{b}$, where:

$$
A=\left[\begin{array}{cccc}
1 & 2 & -3 & 9 \\
2 & -2 & 5 & -9 \\
1 & -1 & 0 & 3 \\
4 & 3 & -1 & 8
\end{array}\right] \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
-2 \\
-1 \\
10
\end{array}\right]
$$

Write your answer in (parametric) vector form
5. (15 points) Calculate $A B$, where $A$ and $B$ are given, or say that $A B$ is undefined.
(a)

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 2 \\
1 & 3
\end{array}\right], \quad B=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
4 & 1 & 3
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & -3 & 1 \\
0 & 2 & 1
\end{array}\right], B=\left[\begin{array}{ll}
2 & 1 \\
0 & 1 \\
3 & 1
\end{array}\right]
$$

6. ( 15 points) Find $A^{-1}$ (or say ' $A$ is not invertible') where:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & 1 \\
3 & -1 & 2
\end{array}\right]
$$

7. (15 points) Find $\operatorname{det}(A)$, where:

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 0 & 0 \\
2 & 0 & 3 & 1 \\
1 & 0 & 0 & 4
\end{array}\right]
$$

